Adding defects to the $4 d \mathcal{N}=2$ superconformal bootstrap

Madalena Lemos

CERN

Pre-Strings 2019
Jul 5 2019, Leuven

together with L. Bianchi and M. Meineri

Outline

(1) The bootstrap program

Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Outline

(1) The bootstrap program

Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and all their correlation functions

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and all their correlation functions
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\left.\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)\right) ~}^{\text {(}}
$$

\rightarrow Finite radius of convergence

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and all their correlation functions
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\left.\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)\right) ~}^{\text {(}}
$$

\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{f_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)
$$

\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{f_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)
$$

\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$
Subject to

- Unitarity

Conformal Bootstrap

Conformal field theory defined by
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{f_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)
$$

\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$
Subject to

- Unitarity
- Associativity of the operator product algebra

Conformal Bootstrap

Conformal field theory defined by
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{f_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k \text { prim. }} f_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} x^{\Delta_{k}-\Delta_{1}-\Delta_{2}}\left(\mathcal{O}_{k}(0)+\ldots\right)
$$

\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$
Subject to

- Unitarity
- Associativity of the operator product algebra
\Leftrightarrow Crossing equations for all four-point functions

3d Ising Model

[Poland Simmons-Duffin Kos, Simmons-Duffin, Poland Simmons-Duffin Kos Vichi]

Ising: Scaling Dimensions

One \mathbb{Z}_{2}-even, one \mathbb{Z}_{2}-odd relevant scalar operator

3d Ising Model

[Poland Simmons-Duffin Kos, Simmons-Duffin, Poland Simmons-Duffin Kos Vichi]

Ising: Scaling Dimensions

One \mathbb{Z}_{2}-even, one \mathbb{Z}_{2}-odd relevant scalar operator

- Lots of progress in delineating the space of theories

3d Ising Model

[Poland Simmons-Duffin Kos, Simmons-Duffin, Poland Simmons-Duffin Kos Vichi]

Ising: Scaling Dimensions

One \mathbb{Z}_{2}-even, one \mathbb{Z}_{2}-odd relevant scalar operator

- Lots of progress in delineating the space of theories
- and in bootstrapping specific CFTs [see Pufu's talk]

Outline

(1) The bootstrap program

Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Conformal Bootstrap

Local operators do not uniquely define a CFT

Conformal Bootstrap

Local operators do not uniquely define a CFT
\rightarrow theories can have same local operators

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups
\rightarrow consistent to restrict to local operators

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups
\rightarrow consistent to restrict to local operators
\rightarrow but want to move beyond those!

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups
\rightarrow consistent to restrict to local operators
\rightarrow but want to move beyond those!

Conformal defects

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups
\rightarrow consistent to restrict to local operators
\rightarrow but want to move beyond those!

Conformal defects
\rightarrow Break as little symmetry as possible

Conformal Bootstrap

Local operators do not uniquely define a CFT

\rightarrow theories can have same local operators
\rightarrow and different spectrum of extended operators
\hookrightarrow line, surfaces, ...
\rightarrow e.g., local operators do not distinguish between $S U(2)$ and $S O(3)$ gauge groups
\rightarrow consistent to restrict to local operators
\rightarrow but want to move beyond those!

Conformal defects
\rightarrow Break as little symmetry as possible
\rightarrow Preserve full conformal algebra on defect

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

d - dimensions

Defects in conformal field theories

On defect
\rightarrow All said about CFTs applies

Defects in conformal field theories

On defect
\rightarrow All said about CFTs applies
! except: no stress tensor

Defects in conformal field theories

On defect

\rightarrow All said about CFTs applies
! except: no stress tensor
\rightarrow OPE, crossing symmetry, ...

Defects in conformal field theories

On defect

\rightarrow All said about CFTs applies
! except: no stress tensor
\rightarrow OPE, crossing symmetry, ...
In bulk
\rightarrow Still have OPE

Defects in conformal field theories

On defect

\rightarrow All said about CFTs applies
! except: no stress tensor
\rightarrow OPE, crossing symmetry, ...
In bulk
\rightarrow Still have OPE
\rightarrow Not enough to compute correlators: $\langle\mathcal{O}\rangle \propto \frac{a_{\mathcal{O}}}{\left|x_{\perp}\right|^{\Delta_{\mathcal{O}}}}$

Defects in conformal field theories

On defect

\rightarrow All said about CFTs applies
! except: no stress tensor
\rightarrow OPE, crossing symmetry, ...

In bulk

\rightarrow Still have OPE
\rightarrow Not enough to compute correlators: $\langle\mathcal{O}\rangle \propto \frac{a_{\mathcal{O}}}{\left|x_{\perp}\right|^{\Delta_{\mathcal{O}}}}$

Bulk to defect OPE

Defects in conformal field theories

On defect

\rightarrow All said about CFTs applies
! except: no stress tensor
\rightarrow OPE, crossing symmetry, ...

In bulk

\rightarrow Still have OPE
\rightarrow Not enough to compute correlators: $\langle\mathcal{O}\rangle \propto \frac{a_{\mathcal{O}}}{\left|x_{\perp}\right|^{\Delta_{\mathcal{O}}}}$

Bulk to defect OPE

Subject to associativity of operator product algebra

Defect operators

Breaking of translation invariance
$\rightarrow p$ - dimensional defect

Defect operators

Breaking of translation invariance
$\rightarrow p$ - dimensional defect
$\rightarrow \exists$ defect operator Δ^{i} of dimension $p+1$

Defect operators

Breaking of translation invariance

$\rightarrow p$ - dimensional defect
$\rightarrow \exists$ defect operator Δ^{i} of dimension $p+1$

$$
\partial_{\mu} T^{\mu} \stackrel{\substack{\perp \text { to defect } \\ \downarrow \\ \hline}}{ }(x)=-D^{i}(x) \underbrace{\delta^{p}(x)}_{\text {on defect }}
$$

Defect operators

Breaking of translation invariance

$\rightarrow p$ - dimensional defect
$\rightarrow \exists$ defect operator Δ^{i} of dimension $p+1$

$$
\begin{gathered}
\begin{array}{c}
\perp \text { to defect } \\
\partial_{\mu} T^{\mu} \stackrel{i}{i} \\
\end{array}(x)=-D^{i}(x) \underbrace{\delta^{p}(x)}_{\text {on defect }}
\end{gathered}
$$

\rightarrow Implements displacements of defect

Defect operators

Breaking of translation invariance

$\rightarrow p$ - dimensional defect
$\rightarrow \exists$ defect operator Δ^{i} of dimension $p+1$
$\partial_{\mu} T^{\mu}{ }^{\mu}{ }^{\downarrow}(x)=-D^{i}(x) \underbrace{\delta^{p}(x)}_{\text {on defect }}$
\rightarrow Implements displacements of defect
$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D} \Rightarrow$ physical meaning

Defect operators

Breaking of translation invariance

$\rightarrow p$ - dimensional defect
$\rightarrow \exists$ defect operator Δ^{i} of dimension $p+1$

$$
\begin{gathered}
\begin{array}{c}
\perp \text { to defect } \\
\partial_{\mu} T^{\mu} \stackrel{i}{i} \\
\end{array}(x)=-D^{i}(x) \underbrace{\delta^{p}(x)}_{\text {on defect }}
\end{gathered}
$$

\rightarrow Implements displacements of defect
$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D} \Rightarrow$ physical meaning

Breaking of symmetries by defect

$\rightarrow \exists$ defect operators associated to that breaking

Outline

(1) The bootstrap program

Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Universality in defect CFT

Defect spectrum looks trivial at large s
[ML Liendo Meineri Sarkar] (analogous to CFT case)

Universality in defect CFT

Defect spectrum looks trivial at large s
[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin

Universality in defect CFT

Defect spectrum looks trivial at large s
[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

Universality in defect CFT

Defect spectrum looks trivial at large s
[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with $\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s$ as $s \rightarrow \infty$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

$$
\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s \text { as } s \rightarrow \infty
$$

\rightarrow trivial defect:

$$
\hookrightarrow \underbrace{\partial_{\perp}^{i_{1}}}_{\perp \text { to defect }} \cdots \partial_{\perp}^{i_{s}}\left(\partial_{\perp} \partial_{\perp}\right)^{n} \phi
$$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with $\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s$ as $s \rightarrow \infty$
\rightarrow trivial defect:

$$
\hookrightarrow \underbrace{\partial_{\perp}^{i_{1}}}_{\perp \text { to defect }} \cdots \partial_{\perp}^{i_{s}}\left(\partial_{\perp} \partial_{\perp}\right)^{n} \phi
$$

$\langle\phi \phi\rangle$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

$$
\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s \text { as } s \rightarrow \infty
$$

\rightarrow trivial defect:

$$
\hookrightarrow \underbrace{\partial_{\perp}^{i_{1}}}_{\perp \text { to defect }} \cdots \partial_{\perp}^{i_{s}}\left(\partial_{\perp} \partial_{\perp}\right)^{n} \phi
$$

$$
\langle\phi \phi\rangle=\sum_{\hat{\mathcal{O}}} b_{\phi \hat{\mathcal{O}}}^{2} \hat{f}(z, \bar{z})
$$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

$$
\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s \text { as } s \rightarrow \infty
$$

\rightarrow trivial defect:

$$
\hookrightarrow \underbrace{\partial_{\perp}^{i_{1}}}_{\perp \text { to defect }} \cdots \partial_{\perp}^{i_{s}}\left(\partial_{\perp} \partial_{\perp}\right)^{n} \phi
$$

$$
\begin{aligned}
\langle\phi \phi\rangle & =\sum_{\hat{\mathcal{O}}} b_{\phi \hat{\mathcal{O}}}^{2} \hat{f}(z, \bar{z}) \\
& =\sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}} a_{\mathcal{O}} g(z, \bar{z})
\end{aligned}
$$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

$$
\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s \text { as } s \rightarrow \infty
$$

\rightarrow trivial defect:

$$
\begin{aligned}
\langle\phi \phi\rangle & =\sum_{\hat{\mathcal{O}}} b_{\phi \hat{\mathcal{O}}}^{2} \hat{f}(z, \bar{z}) \\
& =\underbrace{\sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}} a_{\mathcal{O}} g(z, \bar{z})}_{\text {low twist }}
\end{aligned}
$$

Universality in defect CFT

Defect spectrum looks trivial at large s

[ML Liendo Meineri Sarkar] (analogous to CFT case)
$\rightarrow \mathrm{s} \longleftarrow S O(d-p)$ spin
\rightarrow For each bulk scalar $\phi \Rightarrow \exists$ defect operator with

$$
\hat{\Delta} \rightarrow \Delta_{\phi}+2 n+s \text { as } s \rightarrow \infty
$$

\rightarrow trivial defect:

$$
\begin{aligned}
\langle\phi \phi\rangle & =\sum_{\hat{\mathcal{O}}} b_{\phi \hat{\mathcal{O}}}^{2} \hat{f}(z, \bar{z}) \longrightarrow \text { large } s \\
& =\underbrace{\sum_{\mathcal{O}} f_{\phi \phi \mathcal{O}} a_{\mathcal{O}} g(z, \bar{z})}_{\text {low twist }}
\end{aligned}
$$

Outline

(1) The bootstrap program Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

$$
4 d \mathcal{N}=2 S C F T
$$

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

$$
\begin{aligned}
& 4 d \mathcal{N}=2 \text { SCFT } \\
& s u(2,2 \mid 2) \supset \underbrace{\text { so }(4,2)}_{\text {conformal }}
\end{aligned}
$$

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

$$
\begin{aligned}
& 4 d \mathcal{N}=2 \text { SCFT } \\
& s u(2,2 \mid 2) \supset \underbrace{s o(4,2)}_{\text {conformal }} \oplus \underbrace{s u(2)_{R} \oplus u(1)_{r}}_{R-\text { symmetry }}
\end{aligned}
$$

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Defects in $4 d \mathcal{N}=2$ SCFTs

Half-BPS lines and surfaces

Displacement operator

Breaking of translation invariance
$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$

Displacement operator

Breaking of translation invariance

$$
\begin{aligned}
& \rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D} \\
& \rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}
\end{aligned}
$$

Displacement operator

Breaking of translation invariance
$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?

Displacement operator

Breaking of translation invariance

$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?
\rightarrow conjectured relation for [Lewkowycz Maldacena] for certain susy cases

Displacement operator

Breaking of translation invariance

$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?
\rightarrow conjectured relation for [Lewkowycz Maldacena] for certain susy cases
! Unrelated in general

Displacement operator

Breaking of translation invariance

$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?
\rightarrow conjectured relation for [Lewkowycz Maldacena] for certain susy cases
! Unrelated in general
\rightarrow When does the relation exist?

Displacement operator

Breaking of translation invariance

$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?
\rightarrow conjectured relation for [Lewkowycz Maldacena] for certain susy cases
! Unrelated in general
\rightarrow When does the relation exist?
$\sqrt{ } \mathcal{N}=2$ Half-BPS line and surfaces

Displacement operator

Breaking of translation invariance

$\rightarrow\left\langle D^{i} D^{j}\right\rangle \propto \delta^{i j} C_{D}$
$\rightarrow\left\langle T^{\mu \nu}\right\rangle \propto a_{T}$
Q: Relation between a_{T} and C_{D} ?
\rightarrow conjectured relation for [Lewkowycz Maldacena] for certain susy cases
! Unrelated in general
\rightarrow When does the relation exist?
$\sqrt{ } \mathcal{N}=2$ Half-BPS line and surfaces
\Rightarrow follows from supersymmetry
[Bianchi ML Meineri, Bianchi ML]

Broken symmetries

Displacement supermultiplet

Broken translations \Rightarrow

Broken symmetries

Displacement supermultiplet

Broken translations
$\Rightarrow \quad$ Displacement

Broken symmetries

Displacement supermultiplet
Broken $s u(2)_{R} \rightarrow u(1) \quad \Rightarrow$

Broken translations
$\Rightarrow \quad$ Displacement

Broken symmetries

Displacement supermultiplet
Broken $s u(2)_{R} \rightarrow u(1) \quad \Rightarrow$

Broken translations
$\Rightarrow \quad$ Displacement

Broken symmetries

Displacement supermultiplet
Broken $s u(2)_{R} \rightarrow u(1) \quad \Rightarrow$
Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \quad \Rightarrow$

Broken translations $\quad \Rightarrow$ Displacement

Broken symmetries

Displacement supermultiplet

Broken $s u(2)_{R} \rightarrow u(1) \quad \Rightarrow$
Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow \quad \wedge \quad \tilde{\Lambda}$
Broken translations
\Rightarrow Displacement

Broken symmetries

Displacement supermultiplet
Broken $s u(2)_{R} \rightarrow u(1) \quad \Rightarrow$
Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow$
Broken translations
\Rightarrow Displacement

Broken symmetries

Displacement supermultiplet
Broken su(2) $)_{R} \rightarrow u(1)$

\searrow Preserved \mathcal{Q}
Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow \quad \wedge \quad \tilde{\Lambda}$ Preserved $\tilde{\mathcal{Q}}$
Broken translations \Rightarrow Displacement
\rightarrow Preserved supersymmetry relates two-point functions

Broken symmetries

Displacement supermultiplet
Broken su(2) $)_{R} \rightarrow u(1)$

$$
\Rightarrow
$$

Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \quad \Rightarrow$
Broken translations \Rightarrow Displacement
\rightarrow Preserved supersymmetry relates two-point functions

Stress tensor supermultiplet

$$
\rightarrow \mathcal{O}_{2}, \ldots, J_{s u(2)_{R},}^{\mu} J_{u(1)_{r^{\prime}} \ldots,}^{\mu}, T^{\mu \nu}
$$

Broken symmetries

Displacement supermultiplet

Broken $s u(2)_{R} \rightarrow u(1)$
Broken supersymmetry $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow \wedge_{\searrow} \tilde{\Lambda}^{\text {Preserved }} \tilde{\mathcal{Q}}$
Broken translations

\searrow Preserved \mathcal{Q} \Rightarrow Displacement
\rightarrow Preserved supersymmetry relates two-point functions

Stress tensor supermultiplet

$\rightarrow \mathcal{O}_{2}, \ldots, J_{s u(2)_{R}{ }^{\prime}}^{\mu} J_{u(1)_{r}, \ldots,}^{\mu}, T^{\mu \nu}$
\rightarrow Preserved supersymmetry relates one-point functions

Stress tensor - displacement coupling

$\left\langle T^{\mu \nu} D^{i}\right\rangle$

Stress tensor - displacement coupling

$\left\langle T^{\mu \nu} D^{i}\right\rangle$
\rightarrow Ward identities for broken translations
$\rightarrow\left\langle T_{\mu \nu} D^{i}\right\rangle \propto C_{D}, a_{T}$
[Billò Gonçalves Lauria Meineri]

Stress tensor - displacement coupling

$\left\langle T^{\mu \nu} D^{i}\right\rangle$
\rightarrow Ward identities for broken translations
$\rightarrow\left\langle T_{\mu \nu} D^{i}\right\rangle \propto C_{D}, a_{T}$
[Billò Gonçalves Lauria Meineri]
Super stress tensor - super displacement coupling
\rightarrow Preserved $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow$ relate two-point functions

Stress tensor - displacement coupling

$\left\langle T^{\mu \nu} D^{i}\right\rangle$
\rightarrow Ward identities for broken translations
$\rightarrow\left\langle T_{\mu \nu} D^{i}\right\rangle \propto C_{D}, a_{T}$
[Billò Gonçalves Lauria Meineri]
Super stress tensor - super displacement coupling
\rightarrow Preserved $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow$ relate two-point functions
\rightarrow Broken symmetries \Rightarrow Ward identities

Stress tensor - displacement coupling

$\left\langle T^{\mu \nu} D^{i}\right\rangle$
\rightarrow Ward identities for broken translations
$\rightarrow\left\langle T_{\mu \nu} D^{i}\right\rangle \propto C_{D}, a_{T}$
[Billò Gonçalves Lauria Meineri]
Super stress tensor - super displacement coupling
\rightarrow Preserved $\mathcal{Q}, \tilde{\mathcal{Q}} \Rightarrow$ relate two-point functions
\rightarrow Broken symmetries \Rightarrow Ward identities
$\Rightarrow C_{D}=-12 a_{T}$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow s u(2)_{R}$ current $\mapsto 2 d$ stress tensor $T(z)$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

4d $\mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

4d $\mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet

$$
\hookrightarrow J_{s u(2)_{R}}^{\mu}(z, \bar{z}) J_{s u(2)_{R}}^{\nu}(z, \bar{z}) \sim \ldots
$$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet

$$
\begin{aligned}
& \hookrightarrow J_{s u(2)_{R}}^{\mu}(z, \bar{z}) J_{s u(2)_{R}}^{\nu}(z, \bar{z}) \sim \ldots \\
& \hookrightarrow T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots
\end{aligned}
$$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

$4 d \mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet

$$
\begin{aligned}
& \hookrightarrow J_{s u(2)_{R}}^{\mu}(z, \bar{z}) J_{s u(2)_{R}}^{\nu}(z, \bar{z}) \sim \ldots \\
& \hookrightarrow T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots \\
& \hookrightarrow \text { Global sl(2) enhances to Virasoro }
\end{aligned}
$$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

4d $\mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra

[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet
$\hookrightarrow J_{s u(2)_{R}}^{\mu}(z, \bar{z}) J_{s u(2)_{R}}^{\nu}(z, \bar{z}) \sim \ldots$
$\hookrightarrow T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots$
\hookrightarrow Global sl(2) enhances to Virasoro
$\hookrightarrow c_{2 d}=-12 c_{4 d}$

A solvable subsector of $4 d \mathcal{N} \geqslant 2$ SCFTs

4d $\mathcal{N}=2$ SCFTs $\rightarrow 2 d$ chiral algebra
[Beem Lemos Liendo Peelaers Rastelli van Rees] [see Pufu's talk]
\rightarrow Restrict operators to plane
\rightarrow Cohomology of $\mathcal{Q}+\mathcal{S} \Rightarrow 2 d$ chiral algebra
$\rightarrow \underbrace{s u(2)_{R}}$ current $\mapsto 2 d$ stress tensor $T(z)$
\in Super-stress tensor multiplet
$\hookrightarrow J_{s u(2)_{R}}^{\mu}(z, \bar{z}) J_{s u(2)_{R}}^{\nu}(z, \bar{z}) \sim \ldots$
$\hookrightarrow T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots$
\hookrightarrow Global sl(2) enhances to Virasoro
$\hookrightarrow c_{2 d}=-12 c_{4 d}$
\rightarrow Each $\mathcal{N}=2$ multiplet contributes at most with one $s /(2)$ primary

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$
[Beem Peelaers Rastelli, Cordova Gaiotto Shaol

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol
Preserves $\mathcal{Q}+\mathcal{S}$ used for chiral algebra

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol
Preserves $\mathcal{Q}+\mathcal{S}$ used for chiral algebra

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol

\rightarrow Defects give modules of chiral algebra

Adding defects

Surfaces preserving $\mathcal{N}=(2,2)$

[Beem Peelaers Rastelli, Cordova Gaiotto Shaol

\rightarrow Defects give modules of chiral algebra
\hookrightarrow Schur indices matched to characters of modules

Chiral algebras with defects

Operators in cohomology
\rightarrow (anti-chiral, chiral) defect operators

Chiral algebras with defects

Operators in cohomology
\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$
$\Rightarrow h_{\sigma} \propto a_{T}$

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$
$\Rightarrow h_{\sigma} \propto a_{T}$
$\Rightarrow L_{0}$ may not to act diagonally

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$
$\Rightarrow h_{\sigma} \propto a_{T}$
$\Rightarrow L_{0}$ may not to act diagonally
\rightarrow Superprimary of displacement

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$
$\Rightarrow h_{\sigma} \propto a_{T}$
$\Rightarrow L_{0}$ may not to act diagonally
\rightarrow Superprimary of displacement
\hookrightarrow dimension $h_{\sigma}+1$

Chiral algebras with defects

Operators in cohomology

\rightarrow (anti-chiral, chiral) defect operators
\rightarrow Defect identity $\mapsto \sigma$
$\hookrightarrow J_{s u(2)_{R}}^{\mu}$ defect OPE selection rules
$\hookrightarrow T(z) \sigma(0) \sim \frac{h_{\sigma} \sigma(0)+\ldots}{z^{2}}+\frac{\partial \sigma}{z}$
$\Rightarrow L_{+n}|\sigma\rangle=0, n>0$
$\Rightarrow h_{\sigma} \propto a_{T}$
$\Rightarrow L_{0}$ may not to act diagonally
\rightarrow Superprimary of displacement
\hookrightarrow dimension $h_{\sigma}+1$
\rightarrow Defect marginal operators

Outline

(1) The bootstrap program Adding defects
Universality in defect CFT
(2) Defects in $4 d \mathcal{N}=2$ SCFTs
(3) Summary \& Outlook

Summary \& Outlook

Defects in conformal field theories

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum
- Half-BPS surfaces and lines in $4 d \mathcal{N}=2$:

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum
- Half-BPS surfaces and lines in $4 d \mathcal{N}=2$:
- Supersymmetry \Rightarrow relation between $\left\langle T^{\mu \nu}\right\rangle$ and $\left\langle D^{i} D^{j}\right\rangle$

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum
- Half-BPS surfaces and lines in $4 d \mathcal{N}=2$:
- Supersymmetry \Rightarrow relation between $\left\langle T^{\mu \nu}\right\rangle$ and $\left\langle D^{i} D^{j}\right\rangle$
- Also in half-BPS surfaces in $4 d \mathcal{N}=1$?

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum
- Half-BPS surfaces and lines in $4 d \mathcal{N}=2$:
- Supersymmetry \Rightarrow relation between $\left\langle T^{\mu \nu}\right\rangle$ and $\left\langle D^{i} D^{j}\right\rangle$
- Also in half-BPS surfaces in $4 d \mathcal{N}=1$?
- Generic properties of chiral algebras of defects

Summary \& Outlook

Defects in conformal field theories

- Universality in defect spectrum
- Half-BPS surfaces and lines in $4 d \mathcal{N}=2$:
- Supersymmetry \Rightarrow relation between $\left\langle T^{\mu \nu}\right\rangle$ and $\left\langle D^{i} D^{j}\right\rangle$
- Also in half-BPS surfaces in $4 d \mathcal{N}=1$?
- Generic properties of chiral algebras of defects
- Defect CFT data from chiral algebras?

Thank you!

